2colors

When the Gaia-Movement Living Earth Green World Action USA, Inc. was incorporated in 1999 we chose this name, because we believed and still believe that the Gaia theory is correct.
The Gaia theory was formulated by the British Scientist, James Lovelock in 1970 and James lovelock then believed in sustainability and tree-planting. Decades later James Lovelock changed to support also nuclear power as a solution to the energy needs on this planet. We in the Gaia Movement do NOT support the use of nuclear power as a solution for our energy needs. However, we still believe in the Gaia theory and we have kept our name. Below find more about the Gaia theory.

The study of planetary habitability is partly based upon extrapolation from knowledge of the Earth's conditions, as the Earth is the only planet currently known to harbor life.

The Gaia hypothesis also known as the Gaia theory or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.
The hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s. Lovelock named the idea after Gaia, the primordial goddess who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.
Topics related to the hypothesis include how the biosphere and the evolution of organisms affect the stability of global temperature, salinity of seawater, atmospheric oxygen levels, the maintenance of a hydrosphere of liquid water and other environmental variables that affect the habitability of Earth.
The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology. Lovelock also once described the "geophysiology" of the Earth. Even so, the Gaia hypothesis continues to attract criticism, and today some scientists consider it to be only weakly supported by, or at odds with, the available evidence.

Gaian hypotheses suggest that organisms co-evolve with their environment: that is, they "influence their abiotic environment, and that environment in turn influences the biota by Darwinian process". Lovelock (1995) gave evidence of this in his second book, showing the evolution from the world of the early thermo-acido-philic and methanogenic bacteria towards the oxygen-enriched atmosphere today that supports more complex life.
A reduced version of the hypothesis has been called "influential Gaia" in "Directed Evolution of the Biosphere: Biogeochemical Selection or Gaia?" by Andrei G. Lapenis, which states the biota influence certain aspects of the abiotic world, e.g. temperature and atmosphere. This is not the work of an individual but a collective of Russian scientific research that was combined into this peer reviewed publication. It states the coevolution of life and the environment through “micro–forces” and biogeochemical processes. An example is how the activity of photosynthetic bacteria during Precambrian times have completely modified the Earth atmosphere to turn it aerobic, and as such supporting evolution of life.
Biologists and Earth scientists usually view the factors that stabilize the characteristics of a period as an undirected emergent property or entelechy of the system; as each individual species pursues its own self-interest, for example, their combined actions may have counterbalancing effects on environmental change. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one at the end of the Archaean and the beginning of the Proterozoic periods.
Less accepted versions of the hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia philosophy, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms.

James Lovelock, 2005